脑机穿越:脑机接口改变人类未来(2021年版)在线阅读

脑机穿越:脑机接口改变人类未来(2021年版)

(巴西)米格尔·尼科莱利斯
开会员,本书8折购 >

计算机网络人工智能19.8万字

更新时间:2021-09-03 14:51:17 最新章节:注释

立即阅读
加书架
下载
听书

书籍简介

《脑机穿越》讲述了“人机融合”的未来,即“脑机接口时代”的到来!在未来科技的驱动下,科幻大片的场景已逐渐走入现实。人类通过思维控制人造工具,如今听起来无法想象的事情,在未来会成为常态。从海洋深处到超新星禁区,甚至到我们体内细胞间的微小裂缝,人类的触及范围将追上我们探索未知领域的野心。《脑机穿越》也是“脑机接口”的简要发展史。作者尼科莱利从脑机接口对传统神经科学的颠覆,到早期的“信息输出”,即机器如何读取大脑信息;再到现在科学家苦心钻研的“信息输入”问题,即反馈信号如何作用于大脑……为我们描绘了一幅人类未来新图景!在未来,随着脑机接口技术的不断完善,很多渐冻人患者、严重瘫痪患者也将从中受益。脑机接口有望让这些病患重新恢复功能性运动,重新学会行走。同时,脑机接口并不只局限在医疗康复领域,作者正在进行的“大脑校园”项目将是多学科合作的典范,它将提升人们的教育、健康及生活标准。甚至,我们能进入祖先的记忆库,下载他的思想,通过他私密的感情和生动的记忆,创造一次你们原本永远都不可能经历的邂逅……对于脑机接口将为人类带来怎样的未来生活,这些仅是窥豹一斑。
译者:黄珏苹 郑悠然
上架时间:2021-08-31 00:00:00
出版社:浙江人民出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

(巴西)米格尔·尼科莱利斯
主页

最新上架

  • 空间计算是一种不断发展的以三维世界为中心的计算形式和交互形式,是以计算机视觉为基础的高阶应用。其核心是使用AI、计算机视觉和扩展现实将虚拟体验融入物理世界,让用户摆脱屏幕的束缚,自然地与数字世界中的对象互动,就像与真实世界中的对象互动一样。随着生成式AI的爆发,空间计算平台将拥有更加丰富的内容,将在很大程度上改变我们的生活和工作,重新定义商业模式,并改变我们与技术和整个世界互动的方式,推动我们进入
    (美)凯西·哈克尔 伊雷娜·克罗宁计算机12.1万字
  • 会员
    本书由科大讯飞与中国科大的大模型的资深专家联合撰写,一本书打通大模型的技术原理与应用实践壁垒,深入大模型3步工作流程,详解模型微调、对齐优化、提示工程等核心技术及不同场景的微调方案,全流程讲解6个典型场景的应用开发实践。本书共10章,从逻辑上分为“基础知识”“原理与技术”“应用开发实践”三部分。基础知识(第1章)介绍大模型定义、应用现状、存在的问题,以及发展趋势。原理与技术(第2和3章)详细讲解大
    于俊 刘淇 程礼磊 程明月计算机12.3万字
  • 会员
    本书着重阐述了深度学习时代的计算机视觉算法的工作原理,首先对深度学习与计算机视觉基础进行了介绍,之后对卷积神经网络结构的演化过程,以及基于深度学习的目标检测算法、图像分割算法、人体姿态估计算法、行人重识别与目标跟踪算法、人脸识别算法以及图像超分辨率重建方法进行了介绍。本书系统讲解了在日常生活和工作中常见的几项计算机视觉任务,并着重介绍了在当今深度学习时代,这些计算机视觉任务是如何工作的,可使读者快
    徐从安 李健伟 董云龙 孙超等计算机9.9万字
  • 本书是一本深度探讨大模型在低算力环境下实现迁移与微调的实践指南,并深入讲解了大模型的部署与优化策略。书中结合多个垂直领域的应用场景,从理论到技术实现,全程详尽讲解了如何应对大模型在行业落地中的技术挑战,帮助读者逐步掌握大模型的迁移与微调核心技术。无论你是大模型开发者、人工智能研究人员,还是对垂直领域AI应用感兴趣的行业专家,本书都将带你深入大模型的核心领域,提供从构建、优化到部署的全流程指导,助你
    程戈计算机13.7万字
  • 会员
    本书参照产业界自动驾驶技术研发的基本流程,充分借鉴了产业界在自动驾驶技术领域中的实际研发经验,以高性能的智能小车和高度仿真的车道沙盘为实验教具和运行环境,深入浅出地讲解自动驾驶技术的原理与实际应用,为初学者打开一扇通往人工智能世界的大门。本书以帮助初学者如何从无到有地打造出具备自动驾驶功能的智能小车为主线,内容分为看车(了解自动驾驶)、造车(设计智能小车)、开车(收集训练数据)、写车(编写自动驾驶
    胡波主编计算机14.9万字
  • 会员
    在人工智能的研究中,既包括对于人类理性思维的模拟,还包括对人类感性思维的计算。本书重点讲述的文本情感分析技术就属于后者。该技术源于自然语言处理领域,但也有别于一般的自然语言处理任务。文本情感分析面向的处理对象是社交媒体中产生的用户评论文本,该文本的特点是带有大量的用户主观情感信息,因此该技术的核心是通过自动分析评论文本来进行情感的理解。文本情感分析技术已有20余年的研究历史,凝聚成了多项研究任务和
    秦兵 赵妍妍 林鸿飞 王素格 徐睿峰计算机23.3万字
  • 会员
    PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可
    王晓华计算机11.3万字
  • 会员
    ChatGPT作为人工智能领域的一大进步,引起了热议,其强大功能的背后离不开大模型的支持。大模型指的是参数规模超过千万的机器学习模型,主要应用于语音识别、计算机视觉等领域。本书聚焦大模型,对大模型的技术场景和商业应用展开详细叙述。本书主要从典型应用ChatGPT入手,探寻其背后支撑大模型的魅力。首先,本书对大模型的基础概念、产业格局、带来的新型商业模式进行讲解,展现了大模型的发展现状和商业化潜力。
    梅磊 施海平 陈靖计算机13.2万字
  • 会员
    本书是一部系统介绍AI数字人技术的专业著作,涵盖了数字人的定义、发展历程、关键技术及应用实践等内容,全书共分3部分。在技术基础部分,首先介绍了数字人的定义、发展历程、分类和应用场景,接着详细解析了数字人系统的架构设计、视觉算法和语音合成技术的原理,以及语义理解和知识表示技术如何提升数字人的智能和表现力。在应用实践部分,带领读者深入探索数字人的创作流程,从内容策划、角色建模到交互设计,每一步都进行了
    方进计算机26.2万字

同类书籍最近更新

  • 会员
    本书向数据科学家、数据工程师、架构师和业务分析师展示了如何使用领先的图数据库模型TigerGraph,目标是向读者介绍图数据结构、图分析和图机器学习的概念、技术和工具。三位作者介绍了涵盖多种当代业务需求的真实使用案例。读者将探索从互联数据中获取价值的三阶段方法:连接、分析和学习。几乎每章的开头都列出了对应的三个方面的目标:学习图分析和机器学习的概念;用图分析解决特定问题;了解如何使用GSQL查询语
    (美)维克多·李等人工智能12.5万字
  • 当你凝望夜空时,你是否曾望向繁星背后的虚空:“宇宙的边界在哪里?时空的本质究竟是什么?幽暗的深空中此刻是否也有一双眼睛正在凝视着你?”当你凝视镜中的自己时,你是否曾望向双眼背后的大脑:“我”到底是谁?寄居在这副皮囊之中的灵魂是否真的存在?当肉体衰亡,“我的灵魂”是将随之消散还是化为飘荡于宇宙之中的一股电波?下载知识、移植记忆、意念互通与大脑联结这些科幻电影中的场景能否成为现实?人脑被称为“内在的宇
    (巴西)米格尔·尼科莱利斯人工智能23.2万字
  • 会员
    近年来,深度学习在人工智能的发展过程中起到了举足轻重的作用,而图神经网络是人工智能领域的一个新兴方向,被称为图上的深度学习。本书详细介绍了从深度学习到图神经网络的基础概念和前沿技术,包括图上的深度学习、图神经网络的数学基础、神经网络学习与算法优化、深度学习基础、神经网络中的表示学习、面向图数据的嵌入表示、初代图神经网络、空域及谱域图卷积神经网络等内容。为增强可读性,本书叙述清晰、内容深入浅出、图文
    张玉宏等人工智能17.1万字
  • 会员
    本书简洁地介绍了现代神经网络、人工智能和深度学习技术,专门为软件工程师和数据科学家设计。第1章逐步介绍神经网络的基础知识。第2章比较TensorFlow1.x和TensorFlow2.0编程模型。第3章重点介绍回归。第4章介绍卷积神经网络及其在图像处理中的应用。第5章讨论了CNN在图像、视频、音频和文本处理方面的高级应用。第6章重点介绍生成对抗网络。第7章介绍词嵌入。第8章介绍基本嵌入方法的各
    (意)安东尼奥·古利 (印)阿米塔·卡普尔 (美)苏吉特·帕尔人工智能17.9万字
  • 会员
    本书从AI的发展历史讲起,介绍了目前最热门的深度学习加速芯片和基于神经形态计算的类脑芯片的相关算法、架构、电路等,并介绍了近年来产业界和学术界一些著名的AI芯片,包括生成对抗网络芯片和深度强化学习芯片等。本书着重介绍了用创新的思维来设计AI芯片的各种计算范式,以及下一代AI芯片的几种范例,包括量子启发的AI芯片、进一步提升智能程度的AI芯片、有机自进化AI芯片、光子AI芯片及自供电AI芯片等。本书
    张臣雄人工智能26.7万字
  • 会员
    本书分为两大部分:第一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。此外,附录部分的内容也非常丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,包括支持向量机、决策树、随机森林和集成方法,还提供了使用Sci
    (法)奥雷利安·杰龙人工智能39.5万字